22 research outputs found

    Particle Methods in Bluff Body Aerodynamics

    Get PDF

    High order Poisson Solver for unbounded flows

    Get PDF
    AbstractThis paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green's function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field. The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel or by performing the differentiation as a multiplication of the Fourier coefficients. In this way, differential operators such as the divergence or curl of the solution field could be solved to the same high order convergence without additional computational effort. The method was applied and validated using the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing as regularisation we document an increased convergence rate up to tenth order. The method however, can easily be extended well beyond the tenth order. To show the full extend of the method we present the special case of a spectrally ideal regularisation of the velocity formulated integration kernel, which achieves an optimal rate of convergence
    corecore